Fluid-structure interaction for vascular flows: from supercomputers to laptops

نویسندگان

  • Claudia M. Colciago
  • Simone Deparis
  • Davide Forti
  • D. Forti
چکیده

There exists several models for the simulation of vascular flows; they span from simple circuit models, to full three dimensional ones which take into account detailed features of the blood and of the arterial wall. Each model comes with benefits and drawbacks, the main denominator being a compromise between detailed resolution requirements versus computational time. We first present a fluid-structure interaction computational model where both the fluid and the structure are three dimensional; in particular, the fluid includes modeling of large eddies by the variational multiscale method. After time and space discretisations carried out by finite differences and finite elements, respectively, we set up a parallel solver based on domain decomposition and a FaCSI preconditioner. These simulations allows to capture details of the flow dynamics and of the structure deformation even in the transitional regime characterizing the hemodynamics in the aorta. To complete a simulation of one heartbeat with 35 millions of degrees of freedom on 2048 cores it takes roughly 10 hours. We then reduce both the model and its numerical complexity. The structural model is simplified to a two dimensional membrane located at the fluid-structure interface and the fluid computational domain is fixed. For a fixed geometry and mesh, these assumptions allow to apply proper orthogonal decomposition and generate a space discretisation which has only few dozen degrees of freedom. It is then possible to perform the simulation of one hearbeat on a laptop in less than one second. The modeling and numerical reductions allows therefore a dramatic reduction of the computational time. However, the price to pay comes, on the one hand, in terms of the preparation of a reduced basis specific to the patient and the geometry of the vessel and, on the other hand, with a detriment of certain quantities of interest. For example, when using a finite element discretization with 9 millions of degrees of freedom, the offline part takes about 12 hours on 720 cores for the example provided in this work; in this case, the flow profiles in the aorta are pretty close to the full three dimensional model, but the wall shear stress is overestimated (although it follows the same temporal patterns).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Solver for Massively Parallel Direct Numerical Simulation of Three-Dimensional Multiphase Flows

We present a new solver for massively parallel simulations of fully three-dimensional multiphase flows. The solver runs on a variety of computer architectures from laptops to supercomputers and on 65536 threads or more (limited only by the availability to us of more threads). The code is wholly written by the authors in Fortran 2003 and uses a domain decomposition strategy for parallelization w...

متن کامل

Study of Parameters Affecting Separation Bubble Size in High Speed Flows using k-ω Turbulence Model

Shock waves generated at different parts of vehicle interact with the boundary layer over the surface at high Mach flows. The adverse pressure gradient across strong shock wave causes the flow to separate and peak loads are generated at separation and reattachment points. The size of separation bubble in the shock boundary layer interaction flows depends on various parameters. Reynolds-averaged...

متن کامل

INTERNAllONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, YOLo 21, 933-953 (1995) PARALLEL FINITE ELEMENT SIMULATION OF 3D INCOMPRESSIBLE FLOWS: FLUID-STRUCTURE INTERACTIONS

Massively parallel finite element computations of 3D, unsteady incompressible flows, including those involving fluid-structure interactions, are presented. The computations with time-varying spatial domains are based on the deforming spatial domain/stabilized space-time (DSD/SST) finite element formulation. The capability to solve 3D problems involving fluid-structure interactions is demonstrat...

متن کامل

Parallel Finite Element Simulation of 3d Incompressible Flows: Fluid-structure Interactions

Massively parallel finite element computations of 3D, unsteady incompressible flows, including those involving fluid-structure interactions, are presented. The computations with time-varying spatial domains are based on the deforming spatial domaidstabilized spacetime (DSD/SST) finite element formulation. The capability to solve 3D problems involving fluid-structure interactions is demonstrated...

متن کامل

Fluid-structure interaction studies on marine propeller

Composite propellers offer high damping characteristics and corrosion resistance when compared with metal propellers. But the design of a hybrid composite propeller with the same strength of metal propeller is the critical task. For this purpose, the present paper focusses on fluid-structure interaction analysis of hybrid composite propeller with Carbon/Epoxy, R-Glass/Epoxy and S2-Glass/Epoxy t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016